Multivariable Generalized Bouc-Wen Modeling, Identification and Feedforward Control and Its Application to Multi-DoF Piezoelectric Actuators

نویسندگان

  • Didace Habineza
  • Micky Rakotondrabe
  • Yann Le Gorrec
چکیده

In the literature, the generalized Bouc-Wen model can track precisely asymmetric hysteresis nonlinearity. In this paper, we propose to extend this generalized model to multivariable hysteresis model that can track the nonlinearities in multi-degrees of freedom (multi-DoF) hysteretic actuated systems. In particular, these systems are typified by strong hysteresis couplings. Then, a method of identification of the multivariable hysteresis model is proposed. Finally, based on the inverse multiplicative structure, we propose a multivariable feedforward compensator of the nonlinearity. The proposed approach has been applied to a multiDoF piezoelectric tube (piezotube) used in scanning probe microscopy and the experimental verification demonstrated its validity in terms of model precision and compensation efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling SMA actuated systems based on Bouc-Wen hysteresis model and feed-forward neural network

Despite the fact that shape-memory alloy (SMA) has several mechanical advantages as it continues being used as an actuator in engineering applications, using it still remains as a challenge since it shows both non-linear and hysteretic behavior. To improve the efficiency of SMA application, it is required to do research not only on modeling it, but also on control hysteresis behavior of these m...

متن کامل

Motion Control of Smart Material Based Actuators : Modeling , Controller De - sign and Experimental Evaluation

Motion Control of Smart Material Based Actuators: Modeling, Controller Design and Experimental Evaluation Sining Liu, Ph.D. Concordia University, 2013 Smart material based actuators, such as piezoelectric, magnetostrictive, and shape memory alloy actuators, are known to exhibit hysteresis e ects. When the smart actuators are preceded with plants, such non-smooth nonlinearities usually lead to p...

متن کامل

Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators

A new approach to compensate the strong hysteresis nonlinearity in piezoelectric materials is proposed. Based on the inverse multiplicative scheme, the approach avoids models inversion as employed in existing works. The compensator is therefore simple to implement and does not require additional computation as soon as the direct model is available. The proposed compensation technique is valuabl...

متن کامل

Characterization modeling and H∞ control of n-DOF Piezoelectric actuators : Application to a 3-DOF precise positioner

This paper deals with the characterization, the modeling and the closedloop control of multivariable piezoelectric actuators, with an application to a 3-DOF piezoelectric tube scanner, widely used in precise positioning. These actuators are typified by hysteresis and creep nonlinearities, badly damped oscillation and strong couplings between their axis. First, during the modeling, we propose to...

متن کامل

Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization

In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013